
Why is Big-O Analysis Hard?
Miranda Parker, Colleen Lewis

Harvey Mudd College
301 Platt Blvd

Claremont, CA, USA 91711

mparker, lewis@cs.hmc.edu

ABSTRACT

We are interested in increasing comprehension of how students

understand big-O analysis. We conducted a qualitative analysis of

interviews with two undergraduate students to identify sources of

difficulty within the topic of big-O. This demonstrates the

existence of various difficulties, which contribute to the sparse

research on students’ understanding of pedagogy. The students

involved in the study have only minimal experience with big-O

analysis, discussed within the first two introductory computer

science courses. During these hour-long interviews, the students

were asked to analyze code or a paragraph to find the runtime of

the algorithm involved and invited students to write code that

would in run a certain runtime. From these interactions, we

conclude that students that have difficulties with big-O could be

having trouble with the mathematical function used in the analysis

and/or the techniques they used to solve the problem.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information

Science Education—computer science education

General Terms
Human Factors

Keywords
Big-O, runtime analysis, algorithmic complexity

1. I"TRODUCTIO"

Big-O is used in computer science to estimate the upper-bound of

an algorithm’s runtime [2]. We assume that big-O is important to

students’ ability to write efficient code. However, from our

experience, students appear to have a fair share of difficulty with

this subject. Big-O has been shown to be the most difficult topic

for college students at the introductory programming level [3].

 However, it’s also seen as the least relevant topic at this level,

and thus does not get all of the attention it deserves in terms of

understanding why it is difficult [3].

We created an interview protocol designed to investigate students’

understanding of big-O analysis. During the interview the

students were asked to analyze code or a textual description to

find the runtime of the algorithm involved. We also invited

students to write code that would operate in a certain runtime.

 Afterwards their answers and actions were qualitatively analyzed

in order to gain insight into their understanding of big-O.

2. A"ALYSIS

In the analysis we focus on portions of an explanation Ethan (a

pseudonym) gave for why he feels he does not understand big-O

analysis. This was during the second attempt of a problem that

asked him to write a function that runs in O(log(n)) time. He

initially passed on the problem, but since we had extra time during

the interview he chose to reconsider it. He worked towards a

solution to the problem while he was mentioning what parts of

big-O were hard for him.

From this discussion, we develop the idea that difficulty with big-

O derives from two sections of understanding: the mathematical

function in the analysis and the technique used to solve the

analysis, be in plug-and-chug or reductive thinking [1].

2.1 Episode One

2.1.1 Data
01 Logs, they’re always involving logs.

02 Logs are like the least friendly thing.

03 Like, with you know n squared I could easily point to life

and

04 say that’s an example of something being squared, but

05 a log is really less tangible, you know?

06 like, and even like trig functions, like sine, cosine, tangent,

you can say

07 ‘Oh, triangles.’

08 Like uh I don’t know log and uh

09 also I think part of it is just me.

2.1.2 Analysis
From the transcript presented above, it can be concluded that

Ethan can have different levels of difficulty with different

mathematical functions. This can be deduced from his

differentiation in difficulty between squares and logs. He sees

logs as “the least friendly thing” and “less tangible.” This helps to

provide context for why Ethan initially did not answer the

logarithmic runtime problem, since he could tell from the problem

statement what mathematical function it involved and he knew

that he did not completely understand that function.

2.2 Episode Two

2.2.1 Data
01 Um at least it helps me

02 when I put the number six in there and

03 see, actually sort of count it and

04 reason it in my head with a tangible number and

05 then put it in variable form.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

Koli Calling’13, November 14-17, 2013, Koli, Finland.

http://dx.doi.org/10.1145/2526968.2526996

ACM 978-1-4503-2482-3/13/11.

201

2.2.2 Analysis
Ethan’s plug-and-chug technique for solving the problem may

lead to difficulties in understanding the problem. He feels a sense

of comfort, expressed in line one of this episode, with using this

technique. He likes it because it uses “a tangible number.” This

is connected to the idea of having difficulties with mathematical

functions. This is because plugging a number into a coded

function can be more or less helpful in the big-O analysis

depending on the mathematical function. For example, it may be

easier to notice a number being squared than a number that has the

log taken of it. However, just because a student understands a

mathematical function does not imply that the student also has a

valid and dependable technique for solving for the runtime. In

other words, even if Ethan understood logarithms, his chosen

technique for solving a problem might still give him difficulties

with the runtime analysis.

2.3 Episode Three

2.3.1 Data
01 I know loops and recursion and stuff has n attached to

them, but

02 I don’t know how to mix and match them, and

03 I don’t know what corresponds with what and

04 what logs correspond to.

05 I know there’s some type of correspondence between a

type of programming thing and logs, or whatever.

2.3.2 Analysis
Ethan desires a connection between the abstract (big-O analysis)

and the concrete (algorithms, structures, etc.). He recognizes that

certain programming structures or algorithms have certain

runtimes, expressed in line one of this episode. However, he does

not know all of these correspondences, and admits as much for

logs in line four. A student could plausibly understand logarithms

in a math context but not relate logarithms to inherently binary

structures in a computer science context.

2.4 Analysis Summary
Ethan’s interview led us to hypothesize about two possible areas

that students could have difficulty in when learning big-O

analysis. We are led to this conclusion through Ethan’s

discussions of tangibleness (leading to the plug-and-chug

technique) and correspondence (the reductive thinking technique),

which point to key parts of big-O analysis that, if misunderstood,

could increase the difficulty of runtime analysis from the student’s

perspective. Ethan’s dislike of logarithms carried through all of

these areas, but that does not imply that the mathematical function

and the solution technique are one and the same in terms of

difficulty. The mathematical function interacts with the solution

technique, including plug-and-chug and reductive thinking

techniques, to create difficulty with big-O analysis, as seen in

Figure 1.

3. CO"CLUSIO"
From the analysis, we conjecture that two things work together to

affect a student’s understanding of big-O analysis: the

mathematical function used in the big-O analysis and the

technique the student uses to find the solution to the problem, be it

plug-and-chug or reductive thinking [1].

In terms of the mathematical function, students seemed to have

different experiences in solving a big-O analysis problem

depending on what mathematical function was involved, such as

log(n) or n2. This was most evident when the student was asked

to write a function that ran with a certain big-O runtime.

Additionally, there were various techniques the student used to

find a big-O runtime, some of which produced more correct

answers for a student than others. In some cases, students would

plug values into the algorithm and then try to extrapolate the

runtime from the number of steps the algorithm took to produce

the return value. In other cases, students had an easier time with a

problem when they could determine a pattern in the algorithm that

they seen before, such as a certain set of recursive calls, and

associate it with a certain runtime.

The data suggests that the mathematical function and the

technique used in solving the problem are connected, since the

technique that a student uses may produce a wrong answer

depending on the mathematical function that is involved. For

example, some students found it much easier to detect a

polynomial pattern than a logarithmic pattern.

This study takes the first step towards understanding how students

reason about big-O. Although only a few examples are provided,

these examples of why big-O is difficult can still make a

difference in the pedagogy of this topic. Furthermore, this

research can easily be expanded to explore more areas of big-O

with which students struggle.

4. REFERE"CES
[1] Armoni, M., Gal-Ezer, J. and Hazzan, O. 2006. Reductive

Thinking in Undergraduate CS Courses. In Proceedings of

the 11th annual SIGCSE conference on Innovation and

technology in computer science education (ITICSE '06).

ACM, New York, NY, USA, 133-137.

DOI=10.1145/1140124.1140161

[2] Dasgupta, S., Papadimitriou, C.H. and Vazirani, U.V. 2006.
Algorithms. McGraw-Hill.

[3] Schulte, C., and Bennedsen, J. What Do Teachers Teach in
Introductory Programming? 2006. In Proceedings of the

second international workshop on Computing education

research (ICER '06). ACM, New York, NY, USA, 17-28.

DOI=10.1145/1151588.1151593

202

